Mapping Magnitude: The Evolution of Earthquake Maps | Worlds Revealed (2024)

Did you know that worldwide, roughly 55 earthquakes are recorded per day? Of course, the vast majority of these seismic events are minor, making it all the more impressive that we are able to detect them. The technology used to gather data on earthquakes and seismic movements has vastly improved over time, and with it the mapping of earthquakes has also advanced. Today the United States Geological Survey (USGS) provides an interactive map which displays the precise coordinates, time, and magnitude of the latest earthquakes, not just in the US, but worldwide. Modern day GIS technology has helped revolutionize the way in which, and speed with which, we can map seismic events, but humans have been recording tremors and attempting to map them for centuries.

The earliest known records of earthquakes are from China, dating as far back as 1831 BC. It was nearly 3,600 years later that John Michell, a British engineer, managed to identify the cause of earthquakes as rock moving deep below the surface of the Earth. Early maps showing areas of seismic activity use a gradated effect to show the intensity and frequency of quakes in different regions. The location of volcanoes was also often featured on early seismic maps as it was originally thought that earthquakes and volcanic eruptions were successive phenomena. Further research would eventually reveal that while earthquakes have the potential to cause volcanic eruptions, and similarly, the movement of magma during an eruption can trigger an earthquake, they are independent events. The commonality between these disasters is that both often occur in similar areas, on the borders of the Earth’s tectonic plates.

The advent of the modern seismograph in 1890 revolutionized our understanding of earthquakes once again as it allowed humans to record ground motion during an earthquake. Seismographs are placed in the ground, and when an earthquake strikes, the device moves along with the land. The resulting recording is known as a seismogram, and depicts earthquake intensity based on the amplitude of the waves generated while the seismograph was in motion.

Mapping Magnitude: The Evolution of Earthquake Maps | Worlds Revealed (4)

In measuring ground displacement, seismographs offered a more quantitative measure of intensity than previously available. However, the Richter scale that many are familiar with today, and the concept of earthquake magnitude was not developed for another 45 years. While a seismograph measures ground movement, magnitude is a measure assigned to the size of the earthquake. In 1935 seismologist Charles Richter postulated that if one knew the location of a seismograph from the epicenter of an earthquake, that information could be used to calculate the relative strength of the tremor based on the amplitude of the waves output by the seismograph. Today the idea of magnitude has evolved from Richter’s initial conception and now measures not just the size of the waves generated by a seismograph but also takes into consideration physical features of the quake such as the distance of the fault displacement and the quality of the ground (soft or hard) that shifted.

Mapping Magnitude: The Evolution of Earthquake Maps | Worlds Revealed (6)

Twenty-first century technology now allows us to map seismic events and their relative intensity nearly instantly. Modern GIS data enables us to determine the precise coordinates and depth of an earthquake epicenter. Gone are the days of shaded maps of relative earthquake frequencies. Still, what has remained true throughout history, since well before earthquakes were ever mapped, is our inability to predict when, where, and how strong the next earthquake will be. What we do know for certain is that when the next one strikes, we’ll be able to map it.

  1. Claude Trudel says:

    À titre complémentaire :
    [ A ] Le grand tremblement de terre du 5 février 1663 en Nouvelle-France (Érudit / Lynn Berry, Revue d’histoire de l’Amérique française, Volume 60, numéro 1-2, été–automne 2006, p. 11–35)
    https://doi.org/10.7202/014593ar
    [ B ] Localisation et magnitude du séisme du 5 février 1663 (Québec) revues à l’aide des mouvements de terrain (Jacques Locat, Université Laval)
    http://www.geohazard.ggl.ulaval.ca/alea/locat.pdf
    [ C ] The Big One / Le tremblement de terre de Charlevoix, le plus fort séisme à avoir secoué le Québec de mémoire d’homme, était encore plus puissant que ce qu’on croyait (Jean Hamann, Université Laval)
    https://nouvelles.ulaval.ca/2013/11/14/the-big-one-a:9caf1c81-553f-4ce7-908d-13a584445248
    [ D ] Macroseismic and landslide information on the 1663 moment magnitude (M) 7 earthquake, Charlevoix, Quebec (Maurice Lamontagne, Commission géologique du Canada, Dossier public 8772, 2021, Gouvernement fédéral du Canada)
    https://doi.org/10.4095/328121

Add a Comment

Mapping Magnitude: The Evolution of Earthquake Maps | Worlds Revealed (2024)

References

Top Articles
Latest Posts
Article information

Author: Duncan Muller

Last Updated:

Views: 5968

Rating: 4.9 / 5 (59 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Duncan Muller

Birthday: 1997-01-13

Address: Apt. 505 914 Phillip Crossroad, O'Konborough, NV 62411

Phone: +8555305800947

Job: Construction Agent

Hobby: Shopping, Table tennis, Snowboarding, Rafting, Motor sports, Homebrewing, Taxidermy

Introduction: My name is Duncan Muller, I am a enchanting, good, gentle, modern, tasty, nice, elegant person who loves writing and wants to share my knowledge and understanding with you.